Modelling 1 SUMMER TERM 2020

LECTURE 21
 Variational Modeling

Variational Modeling
 Basic Techniques

Calculus of Variation

Basic Idea:

- Consider functions

$$
f: S \rightarrow D
$$

- Define an "energy functional"

$$
E:(S \rightarrow D) \rightarrow \mathbb{R}
$$

- Functionals map functions $(\cdot \rightarrow \cdot)$ to numbers (\mathbb{R})
- Interpretation: "score"
- Usually: "energy"
- I.e., the smaller the better

Calculus of Variation

Building energy functionals

- Encode requirements ("constraints") on $f: S \rightarrow D$
- Soft constraints \rightarrow violation increases energy.
- Hard constraints \rightarrow violation not allowed
- Excluded from S.

Solution by optimization

- Compute the function(s) f that minimize E.

Calculus of Variation

General framework

- Model problems by "wishlists"

Example 1

- We are looking for a curve.
- It should be as smooth as possible.
- Hard constraint: pass through a number of points

Calculus of Variation

Another example

- Problem
- We want to go to the moon.
- Given
- Orbits of moons, planets and star(s).
- Flight conditions (atmosphere, gravitation of stellar bodies)
- Unknowns
- Throttle from rocket motors (vector function $\left.\mathbf{x}(t): \mathbb{R} \rightarrow \mathbb{R}^{3}\right)$
- Energy function
- Usage of rocket fuel (the fewer the better)
- Perhaps: Overall travel time (maybe not longer than a week)

Calculus of Variation

To the moon

- Constraints
- Start in Cape Canaveral (upright).
- End up on the moon.
- Do not hit moons or planets on the way.
- Land on the moon at $\leq 20 \mathrm{~km} / \mathrm{h}$ relative speed.
- Rocket motor has a limited range of forces
- Minimum and maximum power
- Angle limitations
- No backward thrust
- Flying to the moon = minimizing a functional
- Very, very slightly simplified...

A Simple Example

$$
E(f)=\int_{t=0}^{t=T}\left(\frac{d^{2}}{d t^{2}} f(t)\right)^{2} d t
$$

Simple example: variational splines

- We want smooth curves
- Small curvature
- Approximated by small second derivatives
- (Correct curvature is nonlinear)
- Quadratic energy

A Simple Example

Simple example: variational splines

- Soft constraints
- Parameter values t_{1}, \ldots, t_{n} at which we should approximate points $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}$:

$$
E(f)=\int_{t=t_{1}}^{t=t_{n}}\left[\frac{d^{2}}{d t^{2}} f(t)\right]^{2} d t+\lambda \sum_{i=1}^{n}\left(f\left(t_{i}\right)-\mathbf{p}_{i}\right)^{2}
$$

- λ controls smoothness

A Simple Example

Extension

- Error quadrics
- Specify the accuracy by error quadrics $\mathbf{Q}_{1}, \ldots, \mathbf{Q}_{n}$:

$$
\begin{aligned}
& E(f)=\int_{t=t_{1}}^{t=t_{n}}\left[\frac{d^{2}}{d t^{2}} f(t)\right]^{2} d t+\lambda \sum_{i=1}^{n}\left(f\left(t_{i}\right)-\mathbf{p}_{i}\right)^{2} \\
& E(f)=\int_{t=t_{1}}^{t=t_{n}}\left[\frac{d^{2}}{d t^{2}} f(t)\right]^{2} d t+\lambda \sum_{i=1}^{n}\left(f\left(t_{i}\right)-\mathbf{p}_{i}\right)^{\mathrm{T}} \mathbf{Q}_{i}\left(f\left(t_{i}\right)-\mathbf{p}_{i}\right)
\end{aligned}
$$

Rank-Deficient Quadrics

$$
0=\left[\mathbf{T}-\frac{\text { t世T }}{\|+\| 2}\right]
$$

(linear if t
is fixed a priori)

Error quadric example:

- Permit tangential movement
- Up to first order
- Parameter values might be inaccurate
- Rank- $(d-1)$ matrix constraints
- Point-to-normal constraints

Numerical Treatment

Numerical computation

- No closed form solution
- Numerical solution
- Discretize (finite dimensional function space)
- Solve for coefficients (coordinate vectors in function space)

Finite Differences

FD solution:

- Represent curve as array of k values:

t	0	0.1	0.2	\ldots	7.4	7.5
\mathbf{y}	\mathbf{y}_{0}	\mathbf{y}_{1}	\mathbf{y}_{2}	\ldots	\mathbf{Y}_{74}	\mathbf{y}_{75}

- Unknowns are the curve points $\mathrm{y}_{1}, \ldots, \mathrm{y}_{k}$

Discretized Energy Function

Discretized Energy Function

- Energy: squared linear expression
- Quadratic objective function
- Solution by linear system

$$
\begin{aligned}
& E(f)=\int_{t=t_{1}}^{t_{n}}\left[\frac{d^{2}}{d t^{2}} \mathbf{f}(t)\right]^{2} d t+\sum_{i=1}^{n}\left(\mathbf{f}\left(t_{i}\right)-\mathbf{p}_{i}\right)^{\mathrm{T}} \mathbf{Q}_{i}\left(\mathbf{f}\left(t_{i}\right)-\mathbf{p}_{i}\right) \\
& E^{(d i s c r)}(f)=\sum_{i=1}^{k}\left[\frac{\mathbf{y}_{i-1}-2 \mathbf{y}_{i}+\mathbf{y}_{i+1}}{h^{2}}\right]^{2}+\sum_{i=1}^{n}\left(\mathbf{y}_{\text {index }\left(t_{i}\right)}-\mathbf{p}_{i}\right)^{\mathrm{T}} \mathbf{Q}_{i}\left(\mathbf{y}_{\text {index }\left(t_{i}\right)}-\mathbf{p}_{i}\right)
\end{aligned}
$$

(neglected here: handling boundary values)

Summary

Summary

- Variational approaches look like this:

Optimization: compute arg min $E(f)$
Objective: $\quad E(f)=E^{(\text {data })}(f)+E^{\text {(regularizer) }}(f)$
Hard constraints: $f \in \mathcal{F}:=\{f \mid f$ satisfies hard constraints $\}$

- Connection to statistics
- Bayesian maximum a posteriori estimation
- $E^{\text {(data) }}$ is the data likelihood (log space)
- $E^{\text {(regularizer) }}$ is a prior distribution (log space)

Variational Toolbox
 Data Fitting, Regularizer Functionals, Discretizations

Toolbox

In the following:

- We will discuss...
- ...useful standard functionals.
- ...how to model soft constraints.
- ...how to model hard constraints.
- ...how to discretize the model.
- Click \& snap your custom variational model
- (Click \& snap: add together to a composite energy)

Functionals

Functionals

Standard Functional \#1: Function norm

- Given a function

$$
f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{m}
$$

- Minimize

$$
E(f)=\|f\|^{2}=\int_{\Omega} f(\mathbf{x})^{2} d \mathbf{x}
$$

Objective

- Function values should not become too large
- Often useful to avoid numerical problems
- Positive quadratic energy, then add $\lambda E^{(z e r o)}$ \Rightarrow smallest eigenvalue bounded by λ
- System always solvable

Illustration

Functionals

Standard Functional \#2: Harmonic energy

- Given a function

$$
f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{m}
$$

- Minimize:

$$
E(f)=\|\nabla f\|^{2}=\int_{\Omega}(\nabla f(\mathrm{x}))^{2} d \mathrm{x}
$$

- Minimize differences to neighboring points
- Appears frequently in physics \& engineering

Illustration: $1^{\text {st }}$ Derivatives

Harmonic Energy

Example: Heat equation

- Metal plate
- Hard constraints:
- Heat source
- Heat sink

heat sink heat source
- Final heat distribution?
- Heat flow tends to equalize temperature.
- Stronger heat flow for larger temperature gradients.
- Gradients become as small as possible.

Harmonic Energy

Geometric Effect

- Curves that minimize the harmonic energy
- Shortest path, a.k.a. polygons

- Two-dimensional parametric surface

Surface Example

Surface fitting with Laplacian Regularizer

initialization

result

Data attraction: point-to-plane, Gaussian window Regularizer: minimize triangle edge length

Functionals

Standard Functional \#3: Thin plate spline energy

- Given a function

$$
f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{m}
$$

- Minimize:

$$
E(f)=\int_{\Omega} \sum_{i=1}^{n} \sum_{j=1}^{n}\left\|\frac{\partial^{2}}{\partial_{x_{i}} \partial_{x_{j}}} f(\mathrm{x})\right\|^{2} d \mathrm{x}
$$

- Minimize integral second derivatives (approx. curvature)
- Yields smooth, low curvature curves \& surfaces
- Exact curvature based energy is non-quadratic
- Rare in practice

Illustration: $2^{\text {nd }}$ Derivatives

Energies for Vector Fields

Vector fields:

- Now consider volume deformations: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- Object moving over time:
- $f(\mathrm{x})$ describes its deformation.
- $f(\mathbf{x}, t)$ describes its motion over time.

Functionals

Standard Functional \#4: Green's deformation tensor

- Given a function

$$
f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{n}
$$

- Minimize

Remark: Frobenius Norm

$$
\begin{gathered}
\left\|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\|_{F}^{2} \\
=a^{2}+b^{2}+c^{2}+d^{2}
\end{gathered}
$$

$$
E(f)=\int_{\Omega}\left\|\left[[\nabla f(\mathbf{x})]^{\mathrm{T}}[\nabla f(\mathbf{x})]-\mathbf{I}\right]\right\|_{F}^{2} d \mathbf{x}
$$

- Physically-based deformation modeling
- Minimize "metric distortion"
- Jacobian ∇f is orthogonal $\Leftrightarrow \nabla f \cdot \nabla f^{\mathbf{T}}=\mathbf{I}$
- Invariant under rigid transformations.
- Bending, scaling, shearing is penalized.
- Energy is non-quadratic (4-th order).

Green Tensor / Solid Dynamics

Model

- Object $\Omega \subset \mathbb{R}^{d}(d=2,3)$

Deformation field $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{n}$,
$f(\mathbf{x}, t)=$ new position of point \mathbf{x} at time t

Green Tensor

- (Also) used for modeling deformable solids
- Physically-based deformation modeling
- PDE as Equation of motion

Illustration

Deformation Gradients

Functionals

Standard Functional \#5: Volume preservation

- Given a function

$$
f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{n}
$$

- Minimize

$$
E(f)=\int_{\Omega}[\operatorname{det}(\nabla f(\mathrm{x}))-1]^{2} d \mathrm{x}
$$

- Objective
- Minimize local volume changes
- Preserve the volume at every point
- Incompressible materials (for example fluids)
- Invariant under rigid transformations
- Non-quadratic (6th-order in 3D)

Illustration

Determinant $=$ area $/$ volume

Functionals

Standard Functional \#6: Infinitesimal volume preservation

- Velocity

$$
v: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{n}, v(x)=\frac{d}{d t} f(\mathbf{x}, t)
$$

- Minimize

$$
\begin{aligned}
E(v) & =\int_{\Omega}[\operatorname{div} v(\mathbf{x}, t)]^{2} d \mathbf{x} \\
& =\int_{\Omega}\left[\frac{\partial}{\partial x_{1}} v_{1}(\mathbf{x}, t)+\cdots+\frac{\partial}{\partial x_{n}} v_{n}(\mathbf{x}, t)\right]^{2} d \mathbf{x}
\end{aligned}
$$

- Minimizes local volume changes in a velocity field
- Instantaneous motions
- Linear, but works only for small time steps
- Large (rotational) displacements are not covered

Functionals

Standard Functionals \#7 \& \#8: Velocity \& acceleration

- Function

$$
\begin{gathered}
f: \Omega \times \mathrm{T} \rightarrow \mathbb{R}^{n}, \\
\Omega \subset \mathbb{R}^{n}, \mathrm{~T}=\left[t_{s}, t_{e}\right] \subset \mathbb{R}
\end{gathered}
$$

- Minimize:

$$
E(f)=\iint_{\Omega \times \mathrm{T}}\left(\frac{d}{d t} f(\mathbf{x}, t)\right)^{2} d \mathbf{x} d t \quad E(f)=\iint_{\Omega \times \mathrm{T}}\left(\frac{d^{2}}{d t^{2}} f(\mathbf{x}, t)\right)^{2} d \mathbf{x} d t
$$

- Objective: minimize velocity / acceleration
- Air resistance, inertia.

Illustration: $1^{\text {st }}$ Derivatives

$$
E(f)=\iint_{\Omega \times \mathrm{T}}\left(\frac{d}{d t} f(\mathbf{x}, t)\right)^{2} d \mathbf{x} d t
$$

Illustration: $2^{\text {nd }}$ Derivatives

$$
E(f)=\iint_{\Omega \times T}\left(\frac{d^{2}}{d t^{2}} f(\mathbf{x}, t)\right)^{2} d \mathbf{x} d t
$$

How does the deformation look like?

original

thin
plate splines

Soft Constraints

Soft Constraints

Penalty functions

- Uniform
- General quadrics
- Differential constraints

Types of soft constraints

- Point-wise constraints
- Line / area constraints

Constraint functions

- Least-squares
- M-estimators

Uniform Soft Constraints

Uniform, point-wise soft constraints:

- Given a function

$$
f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{m}
$$

- Minimize: $E^{\text {(constr) }}(\mathbf{f})=\sum_{i=1}^{n} q_{i}\left(\mathbf{f}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right)^{2}$
constraint weights (certainty)
prescribed values $(\mathrm{x}, \mathrm{y})_{i}$

Uniform Soft Constraints

General quadratic, point-wise soft constraints:

- Given a function

$$
f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{m}
$$

- Minimize:

$$
E^{(\text {constr })}(\mathbf{f})=\sum_{i=1}^{n}\left(\mathbf{f}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right)^{\mathrm{T}} \mathbf{Q}_{i}\left(\mathbf{f}\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}\right)
$$

constraint weights (general quadratic form, non-negative)
prescribed values $(\mathrm{x}, \mathrm{y})_{i}$

Uniform Soft Constraints

Differential constraints:

- Given a function $f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{m}$
- Minimize:

$$
E^{(\text {constr) })}(\mathbf{f})=\sum_{i=1}^{n}\left(D \mathbf{f}\left(\mathbf{x}_{i}\right)-(D \mathbf{y})_{i}\right)^{\mathrm{T}} \mathbf{Q}_{i}\left(D \mathbf{f}\left(\mathbf{x}_{i}\right)-(D \mathbf{y})_{i}\right)
$$

constraint weights (general quadratic form, non-negative)
prescribed values $(x, D y)_{i}$
Differential operator: $D=\left(\begin{array}{c}\frac{\partial}{\partial x_{i_{1,1}, \ldots} \ldots \partial x_{i_{k_{1}, 1}}} \\ \vdots \\ \frac{\partial}{\partial x_{i_{1, m}} \ldots . . \partial x_{i_{k_{m}, m}}}\end{array}\right)$
This are still quadratic constraints $(\rightarrow$ linear system).

Examples

Examples of differential constraints:

- Prescribe normal orientation of a parametric surface

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad E(f)=\left(\left(\begin{array}{c}
-\partial_{u} \\
-\partial_{v} \\
1
\end{array}\right) f(u, v)-n\right)^{2}
$$

- Prescribe rotation of a deformation field

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad E(f)=\|\nabla f(\mathbf{x})-\mathbb{R}\|_{F}^{2}
$$

- Prescribe acceleration of a particle

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad f(t)=\text { pos., } \dot{f}(t)=\text { velocity }, \\
E(f)=\|\ddot{f}(t)-a(t)\|_{F}^{2}
\end{gathered}
$$

Line / Area Soft Constraints

Line and area constraints:

- Given a function $f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{m}$
- Minimize:

$$
E^{(\text {constr })}(\mathbf{f})=\int_{A \subseteq \Omega}(\mathbf{f}(\mathbf{x})-\mathbf{y}(\mathbf{x}))^{\mathrm{T}} \mathbf{Q}(\mathbf{x})(\mathbf{f}(\mathbf{x})-\mathbf{y}(\mathbf{x}))
$$

quadric error weights (may be position dependent)
prescribed values $\mathrm{y}(\mathrm{x})$ (function of position x)
area $A \subseteq \Omega$ on which the constraint is placed (line, area, volume...)

- A.k.a: "transfinite constraints"

Constraint Functions

Typical: quadratic constraints

- $E(x)=f(x)^{2}$
- Easy to optimize
- Linear system
- Well-defined critical point
- Gradient vanishes
- However: sensitive to outliers

Constraint Functions

Alternatives for bad data

- L_{1}-norm constraints $(E(x)=|f(x)|)$
- more robust
- still convex, i.e. can be optimized
- Truncated constraints
- even more robust
- non-convex, might be difficult to optimize

Discretization

Two Approaches

Finite Differences

- Use grid
- Replace differentials by differences
- Replace integrals by sums
- See simple example

Finite Elements

- Linear Ansatz

Linear Ansatz

Linear Ansatz

- We use a linear ansatz:

$$
f(\mathrm{x}) \approx \tilde{f}(\mathrm{x})=\sum_{i=1}^{n} \lambda_{i} b_{i}(\mathrm{x})
$$

- \tilde{f} lives in a finite dimensional subspace
- Coordinates: $\lambda_{1} \ldots \lambda_{n}$

<digression>
 Basis Design?

Which Basis Functions?

Example

- Radial basis functions (RBFs)
$b_{\mathbf{x}_{0}}(x)=\exp \left(-\frac{1}{\sigma^{2}}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{2}\right)$

- Sample surface uniformly with \mathbf{x}_{1},
- General domains Ω :

- Sample uniformly, too
- Use Euclidean RBFs restricted to Ω

Other bases

Other basis functions

- RBF-like functions with higher consistency order
- Zero order: Partition of unity
- First, second, third,... order:

Polynomial moving least-squares

- Mesh-based FE functions (spline meshes)
- Fourier basis, spherical harmonics, etc.
- Wavelets
- Finite spatial \& frequency support

Digression: Meshless MLS-Bases

Moving Least Squares

Digression: Meshless MLS-Bases

Constructing the basis

Properties

- Consistency order and smoothness of the MLS-Scheme
- Need to invert matrix to evaluate at each point

</digression>
 Back to FE...

Finite Element Discretization

Derive a discrete equation:

- Just plug in the discrete \tilde{f}.
- Then minimize the it over the $\boldsymbol{\lambda}$.
- Compute the critical point(s):

$$
E\left(\tilde{f}_{\lambda}(\mathrm{x})\right) \rightarrow \min . \quad \Rightarrow \quad \forall i=1, \ldots, k: \frac{\partial}{\partial \lambda_{i}} E\left(\tilde{f}_{\lambda}(\mathrm{x})\right)=0
$$

Solve Equations

- Quadratic functionals: linear system.
- Non-linear, smooth functionals:

Newton, Gauss-Newton, L-BFGS, ...

Example

(Abstract) example:

- Minimize square integral of a differential operator D
- Quadratic differential constraints
- Data term: Match points $f\left(\mathbf{x}_{i}\right)=\mathbf{y}_{i}$
- Soft constraints
- Yields quadratic optimization problem in the coefficients

Example

(Abstract) example (cont):

$$
\begin{aligned}
E(f) & =\int_{\Omega}(D f(\mathrm{x}))^{2} d \mathrm{x}+\mu \sum_{i=1}^{n}\left(f\left(\mathrm{x}_{i}\right)-\mathrm{y}_{i}\right)^{2} \\
E\left(\tilde{f_{\lambda}}\right) & =\int_{\Omega}\left(D \sum_{i=1}^{k} \lambda_{i} b_{i}(\mathrm{x})\right)^{2} d \mathbf{x}+\mu \underbrace{\sum_{i=1}^{n}\left(\sum_{j=1}^{k} \lambda_{j} b_{j}\left(\mathrm{x}_{i}\right)-\mathbf{y}_{i}\right)^{2}}_{\text {DataTerm }} \\
& =\int_{\Omega} \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_{i} \lambda_{j}\left[D b_{i}(\mathrm{x})\right]\left[D b_{j}(\mathrm{x})\right] d \mathbf{x}+\mu \operatorname{DataTerm}(\lambda) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_{i} \lambda_{j} \int_{\Omega} D b_{i}(\mathrm{x}) D b_{j}(\mathrm{x}) d \mathbf{x}+\mu \operatorname{DataTerm}(\lambda)
\end{aligned}
$$

Example 1
 Image Reconstruction

Image Reconstruction Model

Problem statement

- Measured 2D pixel image
- Distorted by noise
- Want to remove noise

Bayesian problem modeling

- Model of measurement process
- Prior distribution on images (this is Bayesian)

Inference: Maximum-a-posteriori

Model

Image

- $x_{i, j}$ with $i=1 \ldots w, j=1, \ldots, h$
- continuous model: $f:[1, w] \times[1, h] \rightarrow \mathbb{R}$

Probability space

- $\Omega=\mathbb{R}^{w \times h}$
- Probability measure on sigma-algebra on $\mathbb{R}^{w \times h}$
- Continuous model " f ": mathematically very involved
- We restrict ourselves to finite-dimensional probabilistic models

Model

Bayes rule

$$
P(X \mid D) \sim P(D \mid X) \cdot P(X)
$$

Likelihood

$$
\begin{aligned}
P(D \mid X) & =\prod_{i=1}^{w} \prod_{j=1}^{h} P\left(d_{i} \mid x_{i}\right)(\text { (i.i.d. noise) } \\
& =\prod_{i=1}^{w} \prod_{j=1}^{h} \mathcal{N}_{d_{i}, \sigma_{D}}\left(x_{i}\right) \text { (Gaussian noise) } \\
& =\prod_{i=1}^{w} \prod_{j=1}^{h}\left[\frac{1}{\left[\frac{1}{\sigma_{D} \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-d_{i}\right)^{2}}{2 \sigma_{D}^{2}}}\right]}\right. \text { (Gaussian distribution) }
\end{aligned}
$$

Model

Likelihood

$$
\cdot P(D \mid X)=\prod_{i=1}^{w} \prod_{j=1}^{h}\left[\frac{1}{\sigma_{D} \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-d_{i}\right)^{2}}{2 \sigma_{D}^{2}}}\right]
$$

Neg-Log-Likelihood

$$
E(D \mid X):=-\ln P(D \mid X)=\sum_{i=1}^{w} \sum_{j=1}^{h} \frac{\left(x_{i}-d_{i}\right)^{2}}{2 \sigma_{D}^{2}}+\frac{w h}{\sigma_{\sigma} \sqrt{2 \pi}}
$$

Model

Prior

- Assumption: Large image gradients are unlikely
- Gaussian distribution on Gradients
- Neg-log-likelihood: $\frac{1}{2 \sigma^{2}}\|\nabla f\|^{2}$
- Discreet:
$\mathrm{E}(X):=-\ln P(X)=\sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}}{2 \sigma_{X}^{2}}+\frac{w h^{\prime}}{\sigma \not / \sqrt{2 \pi}}$ independent of x_{i}

Minimization Problem

Minimize

$$
\begin{aligned}
& E(D \mid X)+\mathrm{E}(X) \\
& =\sum_{i=1}^{w} \sum_{j=1}^{h} \frac{\left(x_{i}-d_{i}\right)^{2}}{2 \sigma_{D}^{2}}+\sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}}{2 \sigma_{X}^{2}}
\end{aligned}
$$

Equivalent minimization objective

$$
\sum_{i=1}^{w} \sum_{j=1}^{n}\left(x_{i}-d_{i}\right)^{2}+\frac{\sigma_{X}^{2}}{\sigma_{D}^{2}} \sum_{i=1}^{w-1} \sum_{j=1}^{n-1}\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}
$$

Continuous

$$
\int_{\Omega}(f(\mathbf{x})-d(\mathbf{x}))^{2} d \mathbf{x}+\frac{\sigma_{X}^{2}}{\sigma_{D}^{2}} \int_{\Omega}\|\nabla f(\mathbf{x})\|^{2} d \mathbf{x}
$$

Modeling I

Looks familiar?

- This is the same objective as in the modeling I assignment (sheet 06).
- Solution via linear system

Variant

- Penalize l_{1} norm instead of l_{2} norm of gradients

$$
\int_{\Omega}(f(\mathbf{x})-d(\mathbf{x}))^{2} d \mathbf{x}+\frac{\sigma_{X}^{2}}{\sigma_{D}^{2}} \int_{\Omega}\|\nabla f(\mathbf{x})\|^{1} d \mathbf{x}
$$

- Laplace distribution (double exponential)
- Yields sharper images (natural image statistics)

Technical Remark

Image Prior

$-\ln P(X)=\sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}}{2 \sigma_{X}^{2}}+\frac{w h}{\sigma_{X} \sqrt{2 \pi}}$

- This is an "improper prior"
- Does not integrate to one!
- Infinite subspaces without penalty
- Formal fix
- Assume broader prior on function value itself: $f \sim N_{0, \sigma_{\text {very }} \text { large }}$
- For MAP estimation, this does not matter
- We just find a point of maximum density
- Integration not required

