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Variational Modeling
Basic Techniques



Calculus of Variation

Basic Idea:

▪ Consider functions
𝑓: 𝑆 → 𝐷

▪ Define an “energy functional”
𝐸: 𝑆 → 𝐷 → ℝ

▪ Functionals map functions ⋅ → ⋅ to numbers (ℝ)

▪ Interpretation: “score”

▪ Usually: “energy”

▪ I.e., the smaller the better



Calculus of Variation

Building energy functionals

▪ Encode requirements (“constraints”) on 𝑓: 𝑆 → 𝐷

▪ Soft constraints → violation increases energy.

▪ Hard constraints → violation not allowed

– Excluded from 𝑆.

Solution by optimization

▪ Compute the function(s) 𝑓 that minimize 𝐸.



Calculus of Variation

General framework

▪ Model problems by “wishlists”

Example 1

▪ We are looking for a curve.

▪ It should be as smooth as possible.

▪ Hard constraint: pass through a number of points

E large E small

constraints



Calculus of Variation

Another example

▪ Problem

▪ We want to go to the moon.

▪ Given

▪ Orbits of moons, planets and star(s).

▪ Flight conditions (atmosphere, gravitation of stellar bodies)

▪ Unknowns

▪ Throttle from rocket motors (vector function 𝐱 𝑡 : ℝ → ℝ3)

▪ Energy function

▪ Usage of rocket fuel (the fewer the better)

▪ Perhaps: Overall travel time (maybe not longer than a week)



Calculus of Variation

To the moon

▪ Constraints

▪ Start in Cape Canaveral (upright).

▪ End up on the moon.

▪ Do not hit moons or planets on the way.

▪ Land on the moon at ≤ 20 km/h relative speed.

▪ Rocket motor has a limited range of forces

– Minimum and maximum power

– Angle limitations

– No backward thrust

▪ Flying to the moon = minimizing a functional

▪ Very, very slightly simplified...



A Simple Example

Simple example: variational splines

▪ We want smooth curves

▪ Small curvature

▪ Approximated by small second derivatives

– (Correct curvature is nonlinear)

▪ Quadratic energy

𝐸 𝑓 = න
𝑡=0

𝑡=𝑇 𝑑2

𝑑𝑡2
𝑓 𝑡

2

𝑑𝑡



A Simple Example

Simple example: variational splines

▪ Soft constraints

▪ Parameter values 𝑡1, … , 𝑡𝑛 at which we 
should approximate points 𝐩1, … , 𝐩𝑛:

▪ 𝜆 controls smoothness

𝐸 𝑓 = න
𝑡=𝑡1

𝑡=𝑡𝑛 𝑑2

𝑑𝑡2
𝑓 𝑡

2

𝑑𝑡 + 𝜆

𝑖=1

𝑛

𝑓 𝑡𝑖 − 𝐩𝑖
2



A Simple Example

Extension

▪ Error quadrics

▪ Specify the accuracy by error quadrics 𝐐1, … , 𝐐𝑛:

𝐸 𝑓 = න
𝑡=𝑡1

𝑡=𝑡𝑛 𝑑2

𝑑𝑡2
𝑓 𝑡

2

𝑑𝑡 + 𝜆

𝑖=1

𝑛

𝑓 𝑡𝑖 − 𝐩𝑖
T𝐐𝑖 𝑓 𝑡𝑖 − 𝐩𝑖

𝐸 𝑓 = න
𝑡=𝑡1

𝑡=𝑡𝑛 𝑑2

𝑑𝑡2
𝑓 𝑡

2

𝑑𝑡 + 𝜆

𝑖=1

𝑛

𝑓 𝑡𝑖 − 𝐩𝑖
2



Rank-Deficient Quadrics

Error quadric example:

▪ Permit tangential movement

▪ Up to first order

▪ Parameter values might be inaccurate

▪ Rank-(𝑑 − 1) matrix constraints

▪ Point-to-normal constraints

n

ti

𝐐 = 𝐈 −
𝐭𝐭T

𝐭 2
t

(linear if 𝐭
is fixed a priori)



Numerical Treatment

Numerical computation

▪ No closed form solution

▪ Numerical solution

▪ Discretize (finite dimensional function space)

▪ Solve for coefficients (coordinate vectors in function space)



Finite Differences

FD solution:

▪ Represent curve as array of k values:

▪ Unknowns are the curve points y1, ..., yk

t 0 0.1 0.2 ... 7.4 7.5

y y0 y1 y2 ... Y74 y75

y1

y2

yk



Discretized Energy Function

Discretized Energy Function

▪ Energy: squared linear expression

▪ Quadratic objective function

▪ Solution by linear system

( ) ( )

( ) ( )
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Summary

Summary

▪ Variational approaches look like this:

▪ Connection to statistics

▪ Bayesian maximum a posteriori estimation

▪ 𝐸(data) is the data likelihood (log space)

▪ 𝐸(regularizer) is a prior distribution (log space)

Optimization: compute argmin𝐸 𝑓

Objective: 𝐸 𝑓 = 𝐸(data) 𝑓 + 𝐸(regularizer) 𝑓

Hard constraints: 𝑓 ∈ ℱ ≔ 𝑓 𝑓 satisfies hard constraints



Variational Toolbox
Data Fitting, Regularizer Functionals,

Discretizations



Toolbox

In the following:

▪ We will discuss...

▪ ...useful standard functionals.

▪ ...how to model soft constraints.

▪ ...how to model hard constraints.

▪ ...how to discretize the model.

▪ Click & snap your custom variational model

▪ (Click & snap: add together to a composite energy)



Functionals



Functionals

Standard Functional #1: Function norm

▪ Given a function
𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑚

▪ Minimize

Objective

▪ Function values should not become too large

▪ Often useful to avoid numerical problems

▪ Positive quadratic energy, then add 𝜆𝐸 𝑧𝑒𝑟𝑜

⇒ smallest eigenvalue bounded by 

▪ System always solvable

𝐸 𝑓 = 𝑓 2 = න
Ω

𝑓 𝐱 2𝑑𝐱



Illustration

𝑓(𝑥)

𝑥

minimize 
Ω
𝑓 𝑥 2𝑑𝑥

Ω Ω

optimum

Ω



Functionals

Standard Functional #2: Harmonic energy

▪ Given a function
𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑚

▪ Minimize:

▪ Minimize differences to neighboring points

▪ Appears frequently in physics & engineering

𝐸 𝑓 = 𝛻𝑓 2 = න
Ω

𝛻𝑓 𝐱
2
𝑑𝐱



Illustration: 1st Derivatives

𝑓(𝑥)

𝑥

minimize 
Ω
𝑓′ 𝑥 2𝑑𝑥

Ω Ω

optimum

Ω

bad

good



Harmonic Energy

Example: Heat equation

▪ Metal plate

▪ Hard constraints:

▪ Heat source

▪ Heat sink

▪ Final heat distribution?

▪ Heat flow tends to equalize temperature.

– Stronger heat flow for larger temperature gradients.

▪ Gradients become as small as possible.

heat sink heat source



Harmonic Energy

Geometric Effect

▪ Curves that minimize the harmonic energy

▪ Shortest path, a.k.a. polygons

▪ Two-dimensional parametric surface



Surface Example

Surface fitting with Laplacian Regularizer

initialization result

Data attraction: point-to-plane, Gaussian window
Regularizer: minimize triangle edge length



Functionals

Standard Functional #3: Thin plate spline energy

▪ Given a function
𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑚

▪ Minimize:

▪ Minimize integral second derivatives (approx. curvature)

▪ Yields smooth, low curvature curves & surfaces

▪ Exact curvature based energy is non-quadratic

– Rare in practice

𝐸 𝑓 = න
Ω



𝑖=1

𝑛



𝑗=1

𝑛
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓 𝐱

2

𝑑𝐱



Illustration: 2nd Derivatives

𝑓(𝑥)

𝑥

minimize ′′Ω𝑓 𝑥
2𝑑𝑥

Ω Ω

optimum

Ω

bad

good



Energies for Vector Fields

Vector fields:

▪ Now consider volume deformations: ℝ𝑛 → ℝ𝑛

▪ Object moving over time:

▪ 𝑓(𝐱) describes its deformation.

▪ 𝑓 𝐱, 𝑡 describes its motion over time.

𝑓:ℝ𝑛 → ℝ𝑛

Ω ⊂ ℝ𝑛 𝑓 Ω ⊂ ℝ𝑛



Functionals

Standard Functional #4: Green’s deformation tensor
▪ Given a function

𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑛

▪ Minimize

▪ Physically-based deformation modeling
▪ Minimize “metric distortion”

▪ Jacobian 𝛻𝑓 is orthogonal    ⇔ 𝛻𝑓 ⋅ 𝛻𝑓T = 𝐈

▪ Invariant under rigid transformations.
▪ Bending, scaling, shearing is penalized.

▪ Energy is non-quadratic (4-th order).

𝐸 𝑓 = න
Ω

𝛻𝑓 𝐱 T 𝛻𝑓 𝐱 − 𝐈
𝐹

2
𝑑𝐱

Remark: Frobenius Norm

𝑎 𝑏
𝑐 𝑑 𝐹

2

= 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2



Green Tensor / Solid Dynamics

Model

▪ Object Ω ⊂ ℝ𝑑 (𝑑 = 2,3)

Deformation field 𝑓: Ω × ℝ → ℝ𝑛,

𝑓 𝐱, 𝑡 = new position of point 𝐱 at time 𝑡

Green Tensor

▪ (Also) used for modeling deformable solids

▪ Physically-based deformation modeling

▪ PDE as Equation of motion

Ω ⊂ ℝ3
𝑓 Ω

𝑓



Illustration

𝑓(Ω)

Ω

Ω

non-rigid
distortion

optimum



Deformation Gradients

comparison to 
orthogonal gradients

deformation
gradients

source 
domain

𝛻𝑓T𝛻𝑓 − 𝐈
𝟐

𝛻𝑓



Functionals

Standard Functional #5: Volume preservation
▪ Given a function

𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑛

▪ Minimize

▪ Objective
▪ Minimize local volume changes

▪ Preserve the volume at every point

▪ Incompressible materials (for example fluids)

▪ Invariant under rigid transformations

▪ Non-quadratic (6th-order in 3D)

𝐸 𝑓 = න
Ω

det 𝛻𝑓 𝐱 − 1
2
𝑑𝐱



Illustration

volume larger
than 1

volume 1

also
volume 1

deformation
gradients

𝛻𝑓

Determinant = area / volume



Functionals

Standard Functional #6: Infinitesimal volume preservation

▪ Velocity

𝑣:Ω → ℝ𝑛, Ω ⊂ ℝ𝑛, 𝑣 𝑥 =
𝑑

𝑑𝑡
𝑓(𝐱, 𝑡)

▪ Minimize

▪ Minimizes local volume changes in a velocity field

▪ Instantaneous motions 
▪ Linear, but works only for small time steps

▪ Large (rotational) displacements are not covered

𝐸 𝑣 = න
Ω

div 𝑣 𝐱, 𝑡 2𝑑𝐱

= න
Ω

𝜕

𝜕𝑥1
𝑣1 𝐱, 𝑡 + ⋯+

𝜕

𝜕𝑥𝑛
𝑣𝑛 𝐱, 𝑡

2

𝑑𝐱



Functionals

Standard Functionals #7 & #8: Velocity & acceleration

▪ Function
𝑓: Ω × T → ℝ𝑛,

Ω ⊂ ℝ𝑛, T = 𝑡𝑠, 𝑡𝑒 ⊂ ℝ

▪ Minimize:

▪ Objective: minimize velocity / acceleration
▪ Air resistance, inertia.

𝐸 𝑓 =ඵ
Ω×T

𝑑

𝑑𝑡
𝑓 𝐱, 𝑡

2

𝑑𝐱𝑑𝑡 𝐸 𝑓 = ඵ
Ω×T

𝑑2

𝑑𝑡2
𝑓 𝐱, 𝑡

2

𝑑𝐱𝑑𝑡



Illustration: 1st Derivatives

𝑓(𝑥)

𝑥

minimize 
Ω
𝑓′ 𝑥 2𝑑𝑥

Ω Ω

optimum

Ω

bad

good

𝐸 𝑓 =ඵ
Ω×T

𝑑

𝑑𝑡
𝑓 𝐱, 𝑡

2

𝑑𝐱𝑑𝑡



Illustration: 2nd Derivatives

𝑓(𝑥)

𝑥

minimize 
Ω
𝑓′′ 𝑥 2𝑑𝑥

Ω Ω

optimum

Ω

bad

good

𝐸 𝑓 =ඵ
Ω×T

𝑑2

𝑑𝑡2
𝑓 𝐱, 𝑡

2

𝑑𝐱𝑑𝑡



How does the deformation look like?

original

as-rigid-as
possible
volume

thin
plate

splines



Soft Constraints



Soft Constraints

Penalty functions
▪ Uniform
▪ General quadrics
▪ Differential constraints

Types of soft constraints
▪ Point-wise constraints
▪ Line / area constraints

Constraint functions
▪ Least-squares
▪ M-estimators



Uniform Soft Constraints

Uniform, point-wise soft constraints:
▪ Given a function

𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑚

▪ Minimize: ( )
=

−=
n

i
iii

constr qE
1

2)( )()( yxff

constraint weights (certainty)

prescribed values (x,y)i



Uniform Soft Constraints

General quadratic, point-wise soft constraints:
▪ Given a function

𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑚

▪ Minimize:

( ) ( )
=

−−=
n

i
iiiii

constrE
1

T)( )()()( yxfQyxff

constraint weights (general quadratic form, non-negative)

prescribed values (x,y)i



Uniform Soft Constraints

Differential constraints:
▪ Given a function  𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑚

▪ Minimize:

( )( ) ( )( )
=

−−=
n

i
iiiii

constr DDDDE
1

T)( )()()( yxfQyxff

constraint weights (general quadratic form, non-negative)

prescribed values (x,Dy)i

Differential operator:































=

mmkm

k

ii

ii

xx

xx
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1,11,1
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This are still quadratic constraints (→ linear system).



Examples of differential constraints:

▪ Prescribe normal orientation of a parametric surface

▪ Prescribe rotation of a deformation field

▪ Prescribe acceleration of a particle

Examples

𝑓:ℝ2 → ℝ3, 𝐸 𝑓 =

𝑓:ℝ3 → ℝ3, 𝐸 𝑓 = 𝛻𝑓 𝐱 − 𝐑 𝐹
2

𝑓:ℝ → ℝ3, 𝑓 𝑡 = pos. , ሶ𝑓 𝑡 = velocity,

𝐸 𝑓 = ሷ𝑓 𝑡 − 𝑎 𝑡
𝐹

2

u

v

x

y

z

−𝜕𝑢
−𝜕𝑣
1

𝑓 𝑢, 𝑣 − 𝑛

2
𝑛

u
v

y

z

w

x
𝐑

𝑓(𝑡)

𝑡

ሷ𝑓(𝑡)

ሶ𝑓(𝑡)



Line / Area Soft Constraints

Line and area constraints:
▪ Given a function 𝑓: Ω → ℝ𝑛, Ω ⊂ ℝ𝑚

▪ Minimize:

▪ A.k.a: “transfinite constraints”

( ) ( )


−−=
A

constrE )()()()()()(
T)( xyxfxQxyxff

quadric error weights (may be position dependent)

prescribed values y(x) (function of position x)

area A   on which the constraint is placed (line, area, volume...)



Constraint Functions

Typical: quadratic constraints
▪ E(x) = f (x)2

▪ Easy to optimize
▪ Linear system

▪ Well-defined critical point
▪ Gradient vanishes

▪ However: sensitive to outliers



Constraint Functions

Alternatives for bad data
▪ L1-norm constraints (E(x) = |f (x)|)

▪ more robust

▪ still convex, i.e. can be optimized

▪ Truncated constraints
▪ even more robust

▪ non-convex, might be difficult to optimize



Discretization



Two Approaches

Finite Differences

▪ Use grid

▪ Replace differentials by differences

▪ Replace integrals by sums

▪ See simple example

Finite Elements

▪ Linear Ansatz



Linear Ansatz

Linear Ansatz

▪ We use a linear ansatz:

𝑓 𝐱 ≈ ሚ𝑓 𝐱 =

𝑖=1

𝑛

𝜆𝑖𝑏𝑖 𝐱

▪ ሚ𝑓 lives in a finite dimensional subspace

▪ Coordinates: 𝜆1…𝜆𝑛



<digression>

Basis Design?



Which Basis Functions?

Example

▪ Radial basis functions (RBFs)

𝑏𝐱0 𝑥 = exp −
1

𝜎2
𝐱 − 𝐱0

2

▪ Sample surface uniformly with 𝐱1, … , 𝐱𝑛

▪ General domains Ω:

▪ Sample uniformly, too

▪ Use Euclidean RBFs
restricted to Ω

𝐱0

𝑏𝐱0 𝐱

𝐱𝑖

𝛚𝑖

Ω

𝑆



Other bases

Other basis functions

▪ RBF-like functions with higher consistency order

▪ Zero order: Partition of unity

▪ First, second, third,… order:
Polynomial moving least-squares

▪ Mesh-based FE functions (spline meshes)

▪ Fourier basis, spherical harmonics, etc.

▪ Wavelets

▪ Finite spatial & frequency support



Digression: Meshless MLS-Bases

Moving Least Squares

target values basis functions

B1 B2 B3

least squares fit

pi = (xi, yi)

(x)

weighting functions



1

0

0

0
0

0

0

0

0
1

evaluate

Digression: Meshless MLS-Bases

Constructing the basis

Properties

▪ Consistency order and smoothness of the MLS-Scheme

▪ Need to invert matrix to evaluate at each point



</digression>

Back to FE…



Finite Element Discretization

Derive a discrete equation:

▪ Just plug in the discrete ሚ𝑓.

▪ Then minimize the it over the 𝛌.

▪ Compute the critical point(s):

Solve Equations

▪ Quadratic functionals: linear system.

▪ Non-linear, smooth functionals:
Newton, Gauss-Newton, L-BFGS, …

𝐸 ሚ𝑓𝛌 𝐱 → min. ⇒ ∀𝑖 = 1,… , 𝑘:
𝜕

𝜕𝜆𝑖
𝐸 ሚ𝑓𝛌 𝐱 = 0



Example

(Abstract) example:

▪ Minimize square integral of a differential operator 𝐷

▪ Quadratic differential constraints

▪ Data term: Match points 𝑓 𝐱𝑖 = 𝐲𝑖
▪ Soft constraints

▪ Yields quadratic optimization problem in the 
coefficients



Example

(Abstract) example (cont):

𝐸 𝑓 = න
Ω

𝐷𝑓 𝐱
2
𝑑𝐱 + 𝜇

𝑖=1

𝑛

𝑓 𝐱𝑖 − 𝐲𝑖
2

𝐸 ሚ𝑓𝛌 = න
Ω

𝐷

𝑖=1

𝑘

𝜆𝑖𝑏𝑖 𝐱

2

𝑑𝐱 + 𝜇 

𝑖=1

𝑛



𝑗=1

𝑘

𝜆𝑗𝑏𝑗 𝐱𝑖 − 𝐲𝑖

2

𝐷𝑎𝑡𝑎𝑇𝑒𝑟𝑚

= න
Ω



𝑖=1

𝑘



𝑗=1

𝑘

𝜆𝑖𝜆𝑗[𝐷𝑏𝑖 𝐱 ] [𝐷𝑏𝑗 𝐱 ] 𝑑𝐱 + 𝜇 𝐷𝑎𝑡𝑎𝑇𝑒𝑟𝑚 𝛌

=

𝑖=1

𝑘



𝑗=1

𝑘

𝜆𝑖𝜆𝑗න
Ω

𝐷𝑏𝑖 𝐱 𝐷𝑏𝑗 𝐱 𝑑𝐱 + 𝜇 𝐷𝑎𝑡𝑎𝑇𝑒𝑟𝑚 𝛌



Example 1

Image Reconstruction



Image Reconstruction Model

Problem statement

▪ Measured 2D pixel image

▪ Distorted by noise

▪ Want to remove noise

Bayesian problem modeling

▪ Model of measurement process

▪ Prior distribution on images (this is Bayesian)

Inference: Maximum-a-posteriori



Model

Image

▪ 𝑥𝑖,𝑗 with 𝑖 = 1…𝑤, 𝑗 = 1,… , ℎ

▪ continuous model: 𝑓: [1, 𝑤] × 1, ℎ → ℝ

Probability space

▪ Ω = ℝ𝑤×ℎ

▪ Probability measure on sigma-algebra on ℝ𝑤×ℎ

▪ Continuous model “𝑓”: mathematically very involved

▪ We restrict ourselves to finite-dimensional probabilistic 
models



Model

Bayes rule
𝑃 𝑋 𝐷 ~ 𝑃 𝐷 𝑋 ⋅ 𝑃(𝑋)

Likelihood

▪ 𝑃 𝐷 𝑋 = ς𝑖=1
𝑤 ς𝑗=1

ℎ 𝑃 𝑑𝑖 𝑥𝑖 (i.i.d. noise)

= ς𝑖=1
𝑤 ς𝑗=1

ℎ 𝒩𝑑𝑖,𝜎𝐷 𝑥𝑖 (Gaussian noise)

= ς𝑖=1
𝑤 ς𝑗=1

ℎ 1

𝜎𝐷 2𝜋
𝑒
−

𝑥𝑖−𝑑𝑖
2

2𝜎𝐷
2

(Gaussian distribution)



Model

Likelihood

▪ 𝑃 𝐷 𝑋 = ς𝑖=1
𝑤 ς𝑗=1

ℎ 1

𝜎𝐷 2𝜋
𝑒
−

𝑥𝑖−𝑑𝑖
2

2𝜎𝐷
2

Neg-Log-Likelihood

𝐸 𝐷 𝑋 ≔ − ln𝑃 𝐷 𝑋 =

𝑖=1

𝑤



𝑗=1

ℎ
𝑥𝑖 − 𝑑𝑖

2

2𝜎𝐷
2 +

𝑤ℎ

𝜎𝐷 2𝜋
independent of 𝑥𝑖



Model

Prior

▪ Assumption: Large image gradients are unlikely

▪ Gaussian distribution on Gradients

▪ Neg-log-likelihood: 
1

2𝜎2
𝛻𝑓 2

▪ Discreet: 

E 𝑋 ≔ −ln 𝑃 𝑋 = 

𝑖=1

𝑤−1



𝑗=1

ℎ−1
𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗

2
+ 𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗

2

2𝜎𝑋
2 +

𝑤ℎ

𝜎𝑋 2𝜋

independent of 𝑥𝑖



Minimization Problem

Minimize
𝐸 𝐷 𝑋 + E 𝑋

=

𝑖=1

𝑤



𝑗=1

ℎ
𝑥𝑖 − 𝑑𝑖

2

2𝜎𝐷
2 + 

𝑖=1

𝑤−1



𝑗=1

ℎ−1
𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗

2
+ 𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗

2

2𝜎𝑋
2

Equivalent minimization objective



𝑖=1

𝑤



𝑗=1

ℎ

𝑥𝑖 − 𝑑𝑖
2 +

𝜎𝑋
2

𝜎𝐷
2 

𝑖=1

𝑤−1



𝑗=1

ℎ−1

𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗
2
+ 𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗

2

Continuous

න
Ω

𝑓 𝐱 − 𝑑 𝐱
2
𝑑𝐱 +

𝜎𝑋
2

𝜎𝐷
2න

Ω

𝛻𝑓 𝐱 2𝑑𝐱



Modeling I

Looks familiar?

▪ This is the same objective as in the modeling I 
assignment (sheet 06).

▪ Solution via linear system

Variant

▪ Penalize 𝑙1 norm instead of 𝑙2 norm of gradients

න
Ω

𝑓 𝐱 − 𝑑 𝐱
2
𝑑𝐱 +

𝜎𝑋
2

𝜎𝐷
2න

Ω

𝛻𝑓 𝐱 1𝑑𝐱

▪ Laplace distribution (double exponential)

▪ Yields sharper images (natural image statistics)



Technical Remark

Image Prior

−ln 𝑃 𝑋 = 

𝑖=1

𝑤−1



𝑗=1

ℎ−1
𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗

2
+ 𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗

2

2𝜎𝑋
2 +

𝑤ℎ

𝜎𝑋 2𝜋

▪ This is an “improper prior”

▪ Does not integrate to one! 

▪ Infinite subspaces without penalty

▪ Formal fix

▪ Assume broader prior on function value itself: 
𝑓~𝑁0,𝜎𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒

▪ For MAP estimation, this does not matter

▪ We just find a point of maximum density

▪ Integration not required



ground truth reconstruction (Gaussian prior)

input (noisy) reconstruction (Laplace prior)


